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Abstract. The BEM is developed for the analysis of plates with variable thickness resting on a nonlinear bi-
parametric elastic foundation. The presented solution is achieved using the Analog Equation Method (AEM).
According to the AEM the fourth-order partial differential equation with variable coefficients describing the
response of the plate is converted to an equivalent linear problem for a plate with constant stiffness not resting
on foundation and subjected only to an ‘appropriate’ fictitious load under the same boundary conditions. The
fictitious load is established using a technique based on the BEM and the solution of the actual problem is obtained
from the known integral representation of the solution of the substitute problem, which is derived using the static
fundamental solution of the biharmonic equation. The method is boundary-only in the sense that the discretization
and the integration are performed only on the boundary. To illustrate the method and its efficiency, plates of various
shapes are analyzed with linear and quadratic plate thickness variation laws resting on a nonlinear biparametric
elastic foundation.
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1. Introduction

The study of plates with variable thickness is pursued in various engineering disciplines, such
as civil engineering, aerospace engineering and the design of machines. Although there is
an extensive literature on plates with constant thickness, a rather limited amount of technical
literature is available on the solution of problems dealing with plates of non-uniform thickness.
The reason for this is that in the case of plates with variable thickness, the governing differ-
ential equation is found to have variable coefficients, and this fact increases the difficulty of
the solution. Prior to the advent of computers, plates with variable thickness could be ana-
lyzed only for certain simple geometries, boundary conditions and thickness variation laws.
The existing analytic solutions are limited to circular and annular plates with linear varying
thickness along the radius subjected to axisymmetric loading, as well as to rectangular plates
with unidirectional thickness variation amenable to use Levy-type solutions. Approximate
methods, such as the Galerkin method and the Rayleigh- Ritz method, have also been used
to treat this problem. Some papers by Katsikadelis and Nerantzaki [1–4] include literature
surveys on plates with variable thickness analyzed by analytical and/or approximate methods;
therefore no attempt to review the literature will be made here.

An arbitrary thickness profile can be treated only by numerical methods. The finite-dif-
ference method (FDM), the finite-element method (FEM) and the boundary-element method
(BEM) are candidates to treat the problem at hand. Although the FDM can solve static prob-
lems for plates with variable thickness, its efficiency is drastically restricted when the geom-
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etry of the plate and the boundary conditions are not simple. The FEM can adequately solve
static and dynamic problems for plates with variable thickness. Certain commercial computer
codes for structural analysis include plate elements with variable thickness. However, no pub-
lications have appeared using FEM when the subgrade reaction is taken into account. With
regard to the BEM, although there is considerable application of this method to the analysis
of plates with constant thickness (e.g. [5–9]), little work has been published on plates with
variable thickness using the BEM. This is obviously because a fundamental solution for the
governing equation cannot be established, at least in a form that could be useful to develop a
pure boundary-element method. A first attempt to use BEM for plates with variable thickness
has been made by Sapountzakis and Katsikadelis [10] and Katsikadelis and Sapountzakis
[11], who employed the fundamental solution of the plate with constant thickness and treated
the term involving derivatives up to the third order as an unknown field quantity. The use
of a Gauss integration scheme on the whole domain of the plate proposed by these authors
alleviated the method from discretizing the domain into cells. Thus, this method retained most
of the advantages of a BEM solution over the pure domain-discretization method. Chaves et al.
[12] presented an alternative BEM formulation for plates with variable thickness by taking an
appropriate form of Betti’s theorem to derive integral representations of displacements and
internal forces. Recently, a more effective BEM-based method for the analysis of plates with
variable thickness has been developed by Nerantzaki and Katsikadelis [1–4] using the concept
of the analog equation introduced by Katsikadelis [13]. Though this method requires domain
discretization to evaluate the domain integrals, it is more versatile and can treat the static and
dynamic problem including also in-plane forces.

In this paper the AEM is further developed and applied to the problem at hand as a
boundary-only method by converting the domain integrals containing the fictitious load to
boundary ones. This is achieved by approximating the fictitious load with a radial basis func-
tion series. Thus, the method retains all the advantages of the pure BEM using a known simple
fundamental solution, i.e., that of the biharmonic equation and it is applied to the problem
of plates with variable thickness resting on a nonlinear biparametric elastic foundation. The
application of the method is illustrated by solving several example problems of plates with
linear and quadratic thickness variation laws and resting on a linear or nonlinear biparametric
elastic foundation. Since no numerical results are available in the literature for the studied
problems, the accuracy of the results is validated by considering plates approaching the plate
with constant thickness and resting on a linear elastic foundation.

2. Governing equation

Consider a thin elastic plate of variable thickness, h = h(x), x : {x, y} ∈ � occupying
the two-dimensional multiply connected domain � of the x, y-plane, bounded by the K + 1
curves �0, �1, �2, . . . , �K . The curves �i(i = 0, 1, 2, . . . , K) may be piece-wise smooth
(Figure 1). Assuming that there is no abrupt variation in thickness, the expressions for bending
and twisting moments derived for plates of constant thickness apply with sufficient accuracy
to this case also [14, pp. 173–174] and the equilibrium of a plate element subjected to a distrib-
uted transverse load g(x), and subgrade reaction p(w,∇2w) yields the following differential
equation in terms of the deflection w(x) in �

D∇4w+2D,x(∇2w),x+2D,y(∇2w),y+∇2D∇2w−(1−ν)(D,xxw,yy−2D,xyw,xy+D,yyw,xx)

+p(w,w,x ,w,y ,w,xy , . . . , w,yyyy ) = g(x), (1)
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Figure 1. Plate geometry and notation.

where D = Eh3/12(1 − ν2) is the variable flexural stiffness of the plate and p(w,w,x ,w,y ,
w,xy ,. . . , wyyyy) is a nonlinear function of the deflection and its derivatives up to the fourth
order representing the subgrade reaction. It should be noted, however, that usual realistic sub-
grade models depend mostly on the deflection and its Laplacian, i.e., p(w,∇2w), and, without
restricting the generality, this is the model that will be used in our applications. Moreover, the
deflection w must satisfy the following boundary conditions on the boundary � =⋃i=k

i=0:

α1w + α2V
∗(w) = α3, β1w,n +β2M

∗(w) = β3, (2a,b)

where αi = αi(x), βi = βi(x), x ∈ �, are functions specified on �; M∗(w) and V ∗(w) are
the normal bending moment and the effective shear force on the boundary. The boundary con-
ditions (2a,b) are the most general linear boundary conditions for the plate-bending problem,
including also transverse and rotational elastic support. All types of conventional boundary
conditions can be derived from (2a,b) by specifying appropriately the functions αi and βi .

Taking into account that the flexural rigidity D is a position-dependent function and using
boundary curvilinear coordinates n and s, we may write the operators M∗, V ∗ appearing in
Equations (2a,b)

M∗ = −D[∇2 + (ν − 1)(
∂2

∂s2
+ κ

∂

∂n
)], (3a)

V ∗ = −D[ ∂

∂n
∇2− (ν − 1)

∂

∂s
(

∂

∂n∂s
− κ

∂

∂s
)] + ∂D

∂s
(ν − 1)(

∂2

∂n∂s
− κ

∂

∂s
)

−∂D

∂n
[∇2 + (ν − 1)(

∂2

∂
s2 + κ

∂

∂n
)],

(3b)

in which κ = κ(s) is the curvature of the boundary; ∂/∂s and ∂/∂n denote differentiation with
respect to the arc length s of the boundary, and the outward normal n to it, respectively.

In the case of free or transversely elastically restrained edges, the boundary conditions
(2a,b) must be supplemented with the corner condition

c1lw + c2l[[T ∗(w)]]l = c3l , c2l �= 0, (4)
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where cik are specified constants at the corner point xl and T ∗ is the operator

T ∗ = D(1 − ν)(
∂2

∂s∂n
− κ

∂

∂s
). (5)

Thus, T ∗(w) is the twisting moment along the boundary and [[T ∗(w)]]l is its jump of discon-
tinuity at the corner point xl .

It should be emphasized that for the biparametric foundation the free boundary, in contrast
to the clamped, allows interaction between the deflections of the foundation area under the
plate and that of outside it. Therefore the boundary condition (2a) should be appropriately
modified on the following physical considerations [15]:
a. The deflection is continuous across the boundary �, while its normal derivative is dis-

continuous;
b. The bending moment M∗(w) vanishes on �;
c. The jump of the shear force in the shear layer on � is equal to the effective shear force

of the plate V ∗(w) on �.
The stress resultants at a point inside � are given as

Mx = −D(w,xx +νw,yy ), My = −D(w,yy +νw,xx ), Mxy = D(1 − ν)w,xy (6a,b,c)

Qx = −D∇2w,x −D,x (w,xx +νw,yy ) − D,y (1 − ν)w,xy , (6d)

Qy = −D∇2w,y −D,y (w,yy +νw,xx ) − D,x (1 − ν)w,xy . (6e)

3. The AEM as boundary-only method

We solve the boundary-value problem described by Equations (1) and (2) using the AEM.
This method is applied to the problem at hand as follows.

Let w be the sought solution of Equation (1). This function is four times continuously
differentiable with respect to the spatial co-ordinates x, y in � and three times on its boundary
�. If the biharmonic operator is applied to this function we have

∇4w = b(x). (7)

Equation (7), which henceforth will be referred to as the analog equation of the problem, indi-
cates that the solution of the original boundary-value problem can be obtained as the solution
of a linear bending problem for a plate having unit stiffness and subjected to a fictitious load
b = b(x) under the given boundary conditions. The unknown load distribution b = b(x) is
established using the direct BEM for thin plates with constant thickness (e.g. [5], [16, Part 1])
based on the Rayleigh-Green reciprocal identity [17, p. 237] after modifying it to include the
natural boundary quantities, i.e., the normal bending moment and the reaction force along
the boundary. Although this approach demands the evaluation of hypersingular kernels, it is
preferred to the indirect method developed by Katsikadelis and Armenakas [7], because the
latter requires the solution of simultaneous boundary differential equations.

The solution of Equation (7) is written in integral form as

w(x)=
∫

�

νbd�+
∫

�

[νV (w)−wV (ν)−ν,n M(w)+w,n M(ν)] ds+
L∑

l=1

([[νT (w)−wT (ν)]])l ,

(8)
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where

ν = 1

8π
r2 log r, r = ‖ξ − x‖, x ∈ �, ξ ∈ � (9)

is the fundamental solution of the biharmonic equation and

V = −[ ∂

∂n
∇2 − (ν − 1)

∂

∂s
(

∂2

∂n∂s
− κ

∂

∂s
)], (10)

M = M∗/D = −[∇2 + (ν − 1)(
∂2

∂s2
+ κ

∂

∂n
)], (11)

T = T ∗/D = (1 − ν)(
∂2

∂s∂n
− κ

∂

∂s
) (12)

are the operators that produce the boundary reactions of the fictitious plate, i.e., the effective
shear force, the normal bending moment and the twisting moment along the boundary.

The domain integral in Equation (8) can be converted to a line integral on the boundary �

by means of the dual reciprocity method [18, Chapter 3]. For this reason the fictitious load b

is approximated by

b =
M∑

j=1

ajfj , (13)

where fj = fj (r) are M radial-basis approximation functions and aj are M coefficients to
be determined. Note that r ≡ rjx = ‖x − xj‖ is the distance between the collocation point
xj := {xj ; yj } and any point x = {x, y} ∈ � ∪ � (see Figure 2).

Thus, the domain integral is written as
∫

�

νbd� =
M∑

j=1

(
aj

∫
�

νfjd�

)
. (14)

If we define the function ŵj = ŵj (rjx) = ŵj (x) as a particular solution of

∇4ŵj = fj (15)

and use the Rayleigh-Green identity, we obtain∫
�

νfjd�=
∫

�

ν∇4ŵjd�=
∫

�

ŵj∇4νd�+
∫

�

[
ν(∇2ŵj),n−ŵj

(∇2ν
)
,n−ν,n∇2ŵj +ŵj,n∇2ν

]
ds.

(16)

A particular solution of Equation (15) can always be established, if fj is specified.
Taking into account that

∇4ν = δ(y − x), y, x ∈ �, (17)

we may write Equation (16) as∫
�

νfjd� = ŵj +
∫

�

[
ν(∇2ŵj ),n −ŵj (∇2ν),n −ν,n ∇2ŵj + ŵj,n∇2ν

]
ds, (18)

which is substituted in Equation (8) to yield
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Figure 2. Field point x, source point ξ and collocation point xj

w(x) =
M∑

j=1

aj

{
ŵj (x) +

∫
�

[
ν(∇2ŵj ),n −ŵj (∇2ν),n −ν,n ∇2ŵj + ŵj,n∇2ν

]
ds

}

+
∫

�

[νV (w) − wV (ν) − ν,n M(w) + w,n M(ν)]ds +
L∑

l=1

[[νT (w) − wT (ν)]]l .
(19)

Letting point x ∈ � in Equation (19) coincide with a point x ∈ �, we obtain the following
integral representations for the deflection and its normal derivative:

α

2π
w(x) =

M∑
j=1

aj

{
α

2π
ŵj (x) +

∫
�

[
ν(∇2ŵj ),n −ŵj (∇2v),n −ν,n ∇2ŵj + ŵj,n∇2ν

]
ds

}

+
∫

�

[νV (w) − wV (ν) − ν,n M(w) + w,n M(ν)]ds +
L∑

l=1

[[νT (w) − wT (ν)]]l ,
(20)

αxw,x (x) + αyw,y (x) =
M∑

j=1

aj

{ [
αxŵj,x(x) + αyŵj,y(x)

]

+
∫

�

[
ν,v (∇2ŵj ),n −ŵj (∇2ν),nv −ν,nv ∇2ŵj + ŵj,n(∇2ν),v

]
ds
}

+
∫

�

[ν,v V (w) − wV (ν,v ) − ν,,v M(w) + w,n M(ν,v )]ds +
L∑

l=1

[[ν,v T (w) − wT (ν,v )]]l ,

(21)

where

ν,v = ν,v (x, ξ ) = 1

8π
rr,v (1 + 2 log r) (22)

is the derivative of the fundamental solution in the direction of the unit vector ν(νx, νy) at
point x ∈ �, which coincides with the normal to the boundary at smooth points (see Figure 1).
Moreover, α = θ1 − θ2 is the angle between the tangents at point x ∈ � and

αx = α

2π
νx + ν

2π
[1

2
νx sin 2θ + νy sin2 θ]θ2

θ1
, (23a)
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αy = α

2π
νy + ν

2π
[νx sin2 θ − 1

2
νy sin 2θ]θ2

θ1
. (23b)

The subscript in ν indicates that the normal derivative is taken with respect to point x ∈ �.
Since the boundary conditions involve the boundary quantities M∗(w), V ∗(w) and T ∗(w), a
further manipulation is required to express V (w) in terms of the actual effective shear force.
Thus, on the base of Equation (3b), we may write

V ∗(w) = DV (w) + (ν − 1)D,s (w,sn −κw,s ) + D,n M(w) (24)

or

V (w) = 1

D
V ∗(w) − (ν − 1)(log D),s (w,sn −κw,s ) − 1

D
(log D),n M∗(w). (25)

Further, substituting Equation (25) in Equations (20) and (21), taking into account that
M(w) = M∗(w)/D, T (w) = T ∗(w)/D and performing integration by parts in the terms
including w,ns and w,s we have

α

2π
w(x) =

M∑
j=1

aj

{
α

2π
ŵj (x) +

∫
�

[
ν(∇2ŵj ),n −ŵj (∇2ν),n −ν,n ∇2ŵj + ŵj,n∇2ν

]
ds

}

+
∫

�

{�1(ν)V ∗(w) + �2(ν)w + �3(ν)M∗(w) + �4(ν)w,n }ds

+
L∑

l=1

1

D
[[νT ∗(w) − wT ∗(ν)]]l + (ν − 1)

L∑
l=1

(ν(log D),s [[κw − w,n ]])l,

(26)

αxw, x(x) + αyw,y (x) =
M∑

j=1

aj

{
[αxŵj,x(x) + αyŵj,y(x)]

+
∫

�

[ν,v (∇2ŵj ),n −ŵj (∇2ν),nv −v,nv ∇2ŵj + ŵj,n(∇2ν),v ds
}

+
∫

�

{K1(ν,v )V ∗(w) + K2(ν,v )w + K3(ν,v )M∗(w) + K4(ν,v )w,n }ds

+
L∑

l=1

1

D
[[ν,v T ∗(w) − wT ∗(ν,v )]]l + (ν − 1)

L∑
l=1

(ν,v (log D),s [[κw − w,n ]]l ),

(27)

where the new kernels are defined as

�1(ν) = 1

D
ν, �2(ν) = −V (ν) − (ν − 1)[ν(log D),s κ],s , (28a,b)

�3(ν) = − 1

D
[ν(log D),n +ν,n ], �4(ν) = M(ν) + (ν − 1)[ν(log D),s ],s , (28c,d)

K1(ν,v ) = 1

D
ν,v , K2(ν,v ) = −V (ν,v ) − (ν − 1)[ν,v (log D),s κ],s , (29a,b)

K3(ν,v ) = − 1

D
(ν,v (log D),n +ν,nv ], K4(ν,v ) = M(ν,v ) + (ν − 1)[ν,v (log D),s ],s .

(29c,d)



320 J.T. Katsikadelis and A.J. Yiotis

For points x ∈ � where the boundary is smooth we have α = π and

αxw,x (x) + αyw,y (x) = 1

2
w,v (x) (30)

and Equations (26) and (27) become

1

2
w(x) =

M∑
j=1

aj

{
1

2
ŵj (x) +

∫
�

[ν(∇2ŵj ),n −ŵj (∇2ν),n −ν,n ∇2ŵj + ŵj,n∇2ν]ds

}

+
∫

�

{�1(ν)V ∗(w) + �2(ν)w + �3(ν)M∗(w) + �4(ν)w,n }ds

+
L∑

l=1

1

D
[[νT ∗(w) − wT ∗(ν)]]l + (ν − 1)

L∑
l=1

(ν(log D),s [[κw − w,n ]])l ,

(31)

1

2
w(x),v =

M∑
j=1

aj

{
1

2
ŵj (x),v+

∫
�

[ν,v (∇2ŵj ),n−ŵj (∇2ν),nv−ν,nv ∇2ŵj +ŵj,n(∇2ν),v ]ds

}

+
∫

�

{K1(ν,v )V ∗(w) + K2(ν,v )w + K3(ν,v )M∗(w) + K4(ν,v )w,n }ds

L∑
l=1

1

D
[[ν,v T ∗(w) − wT ∗(ν,v )]]l + (ν − 1

L∑
l=1

(ν,v (log D),s [[κw − w,n ]])l .

(32)

It is worth noting that, if the plate stiffness is constant along the boundary, the terms including
(log D),s vanish and the kernels are simplified. Moreover, the terms outside the integral are
dropped when the boundary is smooth.

At the corner points on the boundary, due to the abrupt change in the orientation of the
normal, the normal slope, the bending moment and the equivalent shear force may have dis-
continuity and a concentrated force may exist. Introducing the double-node concept, we find
eight boundary values associated with a corner; two values for the normal slope [w,n ]∓, two
values of the bending moment [M∗(w)]∓, two values of the effective shear force [V ∗(w)]∓,
one value of the displacement w, and one value of the concentrated force. Therefore at each
corner point eight independent relations are required. One of these is obtained from Equa-
tion (26) and two others from Equations (27). The five additional independent relations are
furnished by the boundary conditions and the asymptotic smoothness requirement of the
solution in the neighborhood of the corner [19]. Guo-Shu and Mukherjee [20] obtained the
required additional relations by considering the continuity of the first and second partial
derivative with respect to x and y at the corner points. This procedure can be employed also
for plates with variable thickness. Some of the more common cases are given in Table 1.

Using N constant elements to approximate the line integrals (see Figure 3) and applying
Equations (31) and (32), as well as the boundary conditions (2a,b) at the boundary nodal
points, we obtain



A11 A12 A13 A14

A21 A22 A23 A24

A31 0 0 A34

0 A42 A43 0







w

wn

M∗

V∗




=




B11

B21

0

0


 {a} +




0

0

α3

β3




, (33)
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Table 1. Corner boundary conditions (C=clamped, SS=simply supported, F=free).

Corner support Relations

(−) side (+) side

C C w = 0, [w,n ]− = [w,n ]+ = 0, [M∗(w)]− = [M∗(w)]+ = 0

SS SS w = 0, [w,n ]− = [w,n ]+ = 0, [M∗(w)]− = [M∗(w)]+ = 0,

F F T ∗(w) = 0, [M∗(w)]− = [M∗(w)]+ = 0,

[V ∗(w)]− = [V ∗(w)]+ = 0

C SS w = 0, [w,n ]− = [w,n ]+ = 0, [M∗(w)]− = [M∗(w)]+ = 0

Figure 3. Boundary discretization and domain nodal points

where Aij (i = 1, 2) are N×N and Bi1 N×M known matrices originating from the integration
of the kernels on the boundary elements and Aij (i = 3, 4) N ×N diagonal matrices including
the nodal values of the functions αk = αk(x), βk = βk(x), (k = 1, 2). Finally, α3,β3 are N ×1
vectors containing the nodal values of the boundary functions α3 = α3(x), β3 = β3(x).

The derivatives of the deflection are obtained by direct differentiation of Equation (19)
taking into consideration Equations (28) and (29). Thus, for the shake of conciseness we can
write the integral representations of the deflections and its derivatives up to the third order

w(x),pqr =
M∑

j=1

aj

{
ŵj,pqr (x) +

∫
�

[
ν,pqr (∇2ŵj ),n −ŵj (∇2ν),npqr −ν,npqr ∇2ŵj

+ŵj,n∇2ν,pqr

]
ds
}

+ ∫
�

{
�1(ν,pqr )V ∗(w) + �2(ν,pqr )w + �3(ν,pqr )M∗(w)

+�4(ν,pqr )w,n
}

ds +
L∑

l=1

1

D
[[ν,pqr T ∗(w) − wT ∗(ν,pqr )]]l

+(ν − 1)

L∑
l=1

(ν,pqr (log D),s [[κw − w,n ]])l,

(34)

where p, q, r = 0, x, y.
Applying Equation (34) at M points inside �, using the same boundary disctretization to

approximate the line integrals and noting that for discontinuous elements [21] the corner terms
do not contribute, we obtain
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w,pqr = A,pqr +B,pqr w + C,pqr Wn + D,pqr M∗
n + E,pqr V∗

n, (35)

where A,pqr , B,pqr , . . . , E,pqr are known matrices originating from the integration of the
kernels on the boundary elements and w,pqr the vector of the M values of the designated
quantity. It must be emphasized that the kernels in Equations (34) are regular because the
distance r = |x − y|, x ∈ �, y ∈ � never vanishes during the integration. The integration is
performed by Gaussian quadrature. Equations (33) are used to express the boundary quantities
in terms of the vector a:


w

w,n

M∗

V∗




=




A11 A12 A13 A14

A21 A22 A23 A24

A31 0 0 A34

0 A42 A43 0




−1





B11

B21

0

0


 {a} +




0

0

α3

β3





 , (36)

which are subsequently substituted in Equation (35) to yield

w,pqr = H,pqr a + h,pqr . (37)

The matrix H,pqr has dimensions M × M and the vector h,pqr M × 1.
The final step of the AEM is to apply Equation (1) to the M points inside � and replace

the involved values of the deflection and its derivatives using Equations (37). Thus we obtain
the following set of simultaneous nonlinear algebraic equations

Fa + f(a) = g, (38)

where F is a known M×M matrix, f(a) a vector of M nonlinear functions of a and g the vector
of the M values of the load at the interior points. For linear elastic foundation, Equation (38)
is further simplified as

Fa = g, (39)

where F is a known M × M matrix.
Equation (38) or (39) are solved to establish the vector a. Then the values of the deflec-

tion and its derivatives are determined from Equation (37). The obtained values are used in
Equations (6) to evaluate the stress resultants. The boundary quantities are established from
Equation (36) and the subgrade reaction from p(w,∇2w). For points x not coinciding with the
domain points the respective quantities can be established from the discretized counterparts
of Equation (37).

The theoretical background of the AEM is simple, it is explained in [13] and is fully
understood from its successful application to solve a large variety of engineering problems
described by ordinary and partial differential equations [22]. According to the concept of the
analog equation, the reduction of Equation (1) to the substitute equation (7) is not unique. Any
fourth-order differential operator may be used to derive the analog equation. However, for the
implementation of the method the operator should be the simplest one having a simple known
fundamental solution and, thus, a known integral representation of the solution. Apparently,
for the problem at hand, the biharmonic operator satisfies these requirements. Nevertheless,
the method is still open to a rigorous mathematical foundation, especially when applied to the
solution of problems described by parabolic and hyperbolic differential equations. Regarding
its application to nonlinear problems, the selection of a linear analog equation does not spoil
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the method, since the nonlinearity is transferred to the system of the nonlinear algebraic
equations, i.e., Equation (38).

4. Numerical examples

On the basis of the procedure described in the previous section a FORTRAN program has
been written for the analysis of plates with variable thickness resting on a nonlinear elastic
foundation. Without excluding more general subgrade models, the one adopted herein is the
biparametric model

p = k0w − k1w
2 − G∇2w, (40)

where k0, k1 and G are given constants. Actually, this model is triparametric. Nevertheless, we
maintain the term biparametric, because it consists of separated nonlinear Winkler’s springs
(p = k0w−k1w

2), which are enforced to interact by the shear layer with modulus G. Extended
literature on subgrade models can be found in Selvadurai [23, Chapter 2].

The approximation functions fj employed herein are the multiquadrics [24], which are
global and defined as

fj =
√

r2 + c2, (41)

where c is an arbitrary constant and

r =
√

(x − xj )2 + (y − yj )2 j = 1, 2, . . . ,M (42)

with xj , yj being the collocation point. Using these radial-base functions, we obtain the
particular solution of Equation (15) as

ŵj = − 1

12
log(c

√
r2 + c2 + c2)c3(r2 + c2) + 7

60
c5 log(c

√
r2 + c2 + c2) − 1

12
c5 + 1

12
c3r2

− 7

60
c4
√

r2 + c2 + 1

225
(r2 + c2)5/2 + 2

45
c2(r2 + c2)3/2. (43)

The selection of the shape parameter c is very important for the accuracy and convergence of
the method. There are empirical formulae [25] which might be used to estimate its value.
In our examples, values of c ranging between 0·20 and 1·00 give very good results. The
optimum value has been tested by comparing the results with those from existing solutions.
In cases, however, where no results are available to compare with, the optimum value of c is
taken as that minimizing the total potential of the plate. This is shown in Figure 6, where the
dependence of the total potential on the shape parameter c is presented for various values of
the ratio η = h0/hB of the plate in Example 3.

The derivatives of ŵj involved in Equation (34) are obtained using a symbolic language and
are converted directly to FORTRAN code. They are not quoted here, because their expressions
are too lengthy.

For the presentation of the numerical results the following dimensionless parameters are
introduced

s = a/
√

D0/G, λi = a/ 4
√

D0/ki, (i = 0, 1), (44)
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Table 2. Deflections w = w/(g0a
4/DM) and bending moments M̄x = Mx/g0a2 at the center of a

rectangular clamped plate with linearly varying thickness (ν = 0·3).

b/a λ0, λ1, s ha/h0

Ref. [26] Present solution

1·0 1·0 1·001 1·2
1·5 λ0 = 0·134 w̄ 0·109 × 10−2 0·107 × 10−2 0·107 × 10−2 0·535 × 10−3

λ1 = 0

s = 0 M̄x 0·183 × 10−1 0·181 × 10−1 0·181 × 10−1 0·093 × 10−1

λ0 = 0·134 w̄ 0·107 × 10−2 0·107 × 10−2 0·535 × 10−3

λ1 = 0·01

s = 0·001 M̄x 0·181 × 10−1 0·181 × 10−1 0·093 × 10−1

λ0 = 5 w̄ 0·342 × 10−3 0·343 × 10−3 0·483 × 10−3

λ1 = 0·2
s = 7 M̄x 4·468 × 10−3 4·476 × 10−3 6·667 × 10−3

1·0 λ0 = 0·134 w̄ 0·630 × 10−3 0·616 × 10−3 0·614 × 10−3 0·471 × 10−3

λ1 = 0

s = 0 M̄x 0·114 × 10−1 0·113 × 10−1 0·113 × 10−1 0·089 × 10−1

λ0 = 0·134 w̄ 0·616 × 10−3 0·614 × 10−3 0·471 × 10−3

λ1 = 0·01

s = 0·001 M̄x 0·113 × 10−1 0·113 × 10−1 0·089 × 10−1

λ0 = 5 w̄ 0·250 × 10−3 0·250 × 10−3 0·295 × 10−3

λ1 = 0·2
s = 7 M̄x 3·708 × 10−3 3·713 × 10−3 4·694 × 10−3

where a is a characteristic length of the plate (e.g., the length of one side of a rectangular plate)
and D0 its flexural stiffness at the origin of the coordinates. For usual engineering applications
it may be 0 ≤ s ≤ 30 and 0 ≤ λ0 ≤ 20 [26].

4.1. EXAMPLE 1. CLAMPED RECTANGULAR PLATE WITH LINEARLY VARYING

THICKNESS

A clamped rectangular plate a × b 0 ≤ x ≤ a, 0 ≤ y ≤ b with linearly varying thickness
h = h0(1 + βxx/a), βx = ha/h0 − 1 resting on a biparametric elastic foundation has been
studied; h0 and ha denote the plate thickness at x = 0 and x = a. The plate is subjected to the
hydrostatic load g0x/a. The computed deflections w̄ = w/(g0a

4/DM), DM = Eh3
M/12(1 −

ν2), hM = (h0 + ha)/2 and bending moments M̄x = Mx/g0a
2 are presented in Table 2. The

numerical results have been obtained using N = 80 and M = 81 nodal points. Note that as
anticipated the deflections approach those given in [26] for a plate with constant thickness
when ha/h0 → 1, λ1 → 0, s → 0.
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Figure 4. Simply supported square plate with quadratic thickness variation.

4.2. EXAMPLE 2. SIMPLY SUPPORTED SQUARE PLATE WITH LINEARLY VARYING

THICKNESS

A simply supported square plate 0 ≤ x ≤ a, 0 ≤ y ≤ b with linearly varying thickness
h = h0(1 + βxx/a), βx = ha/h0 − 1 resting on a biparametric elastic foundation has been
studied; h0 and ha are the plate thicknesses at x = 0 and x = a. The plate is subjected to
uniform load g = g0. The computed deflections w̄ = w/(g0a

4/DM), DM = Eh3
M/12(1−ν2),

hM = (h0 + ha)/2 and bending moments M̄x = Mx/g0a
2 are presented in Table 3. The

numerical results have been obtained using N = 80 and M = 81 nodal points. Note that the
deflections approach those given in [8] for the plate with constant thickness resting on linear
Winkler’s foundation, when ha/h0 → 1 and λ1 → 0 s → 0.
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Figure 5. Variation of w̄ = w/(g0a4/D0), M̄x = Mx/g0a
2, Q̄x = Qx/g0a and p̄ = p/g0 along the the x-axis

in the plate of Example 3.

Figure 6. Dependence of total potential �(c) on the shape parameter c.
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Table 3. Deflections w̄ = w/(g0a4/DM) and bending moments M̄x = Mx/g0a2 at the center of a
square simply supported plate with linearly varying thickness (ν = 0·3).

b/a λ0, λ1, s ha/h0

Ref. [8] Present solution

1·0 1·0 1·001 1·2
1·0 λ1 = 3·76 w̄ 0·2671 × 10−2 0·2653 × 10−2 0·2654 × 10−2 0·3706 × 10−2

λ1 = 0

s = 0 M̄x 0·0301 0·0299 0·0299 0·0420

λ0 = 3·76 w̄ 0·2653 × 10−2 0·2654 × 10−2 0·3706 × 10−2

λ1 = 0·01

s = 0·001 M̄x 0·0299 0·0299 0·0420

λ0 = 5 w̄ 0·7554 × 10−3 0·7564 × 10−3 1·1533 × 10−3

λ1 = 0·2
s = 7 M̄x 0·721 × 10−4 0·722 × 10−4 0·0143

Table 4. Deflections w̄ = w/(g0b
4/D0) and bending moments M̄x = Mx/g0b2

at the center of an elliptic simply supported plate with quadratic thickness variation
(ν = 0·3).

h0/hB

a/b λ0, λ1, s 1·0 1·2 1·5
1 λ0 = 2·11 w̄ 0·4384 × 10−2 0·4427 × 10−2 0·4455 × 10−2

λ1 = 3 M̄x 0·1225 × 10−1 0·1206 × 10−1 0·1188 × 10−1

s = 7 p̄ 0·9979 0·9844 0·9709

7·5/5 λ0 = 2·11 w̄ 0·1327 × 10−1 0·1359 × 10−1 0·1383 × 10−1

λ1 = 3 M̄x 0·2211 × 10−1 0·2028 × 10−1 0·1855 × 10−1

s = 7 p̄ 0·9774 0·9576 0·9371

4.3. EXAMPLE 3. SIMPLY SUPPORTED SQUARE PLATE WITH QUADRATIC THICKNESS

VARIATION LAW

A simply supported square plate with side length a has been analyzed. The thickness variation
law is specified by the function h(r) = (hB −h0)(r/R)2+h0, 0 ≤ r ≤ R, where h0 is the plate
thickness at the center of the plate and hB its constant thickness along the boundary; R is the
radial distance from the center of the plate to the boundary. The contours of the plate thickness
are shown in Figure 4a. The plate is subjected to uniform load g = g0. The numerical results
have been obtained for a = 10 m, E = 2·1 × 106 kN/m2, ν = 0·3, λ0 = 3·76, λ1 = 3·16,
s = 7, h0 = 0·15 m, hB = 0·10 m, N = 80, M = 81. The contours of the computed deflection
w̄ = w/(g0a

4/D0), bending moment M̄x = Mx/g0a
2 and subgrade reaction p̄ = p/g0

are shown in Figures 4b, c, d. Moreover, in Figure 5 the variation of w̄ = w/(g0a
4/D0),
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Figure 7. Simply supported elliptic plate with quadratic thickness variation.

M̄x = Mx/g0a
2, Q̄x = Qx/g0a and p̄ = p/g0 along the x-axis are presented. Finally, the

dependence of total potential �(x) of the plate on the shape parameter c is shown for various
values of η = h0/hB , which permits the selection of an optimum value of c.

4.4. EXAMPLE 4. ELLIPTIC SIMPLY SUPPORTED PLATE WITH QUADRATIC THICKNESS

VARIATION LAW

A simply supported elliptic plate resting on a nonlinear biparametric foundation has been
analyzed. Its boundary is defined by the ellipse x = a cos θ , y = b sin θ , 0 ≤ θ ≤ 2π .
The thickness-variation law is specified by the function h(r) = (hB − h0)(r/R)2 + h0, 0 ≤
r ≤ R, where h0 is the plate thickness at the center of the plate and hB its constant thickness
along the boundary; R = √

x2 + y2 is the radial distance from the center of the plate to the
boundary. The contours of the plate thickness are shown in Figure 7a. The curvature of the
elliptic boundary is obtained as κ(s) = ab/[a2 + (b2 − a2) cos θ2]3/2. The plate is subjected
to uniform load g = g0. The numerical results have been obtained for E = 2·1 × 106 kN/m2,
ν = 0·3, λ0 = 2·11, λ1 = 3, s = 7, h0 = 0·15 m, hB = 0·10 m, N = 80, M = 81.
The computed deflections w̄ = w/(g0b

4/D0), bending moments M̄x = Mx/g0b
2 and the

subgrade reaction p̄ = p/g0 are presented in Table 4. Moreover, the contours of the computed
deflections w̄ = w/(g0b

4/D0), bending moments M̄x = Mx/g0b
2 and M̄y = My/g0b

2 are
shown in Figures 7b–d.
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5. Conclusions

In this paper the BEM has been developed for the analysis of plates with variable stiffness
resting on a nonlinear biparametric foundation. The presented method is based on the concept
of the analog equation, which replaces the original problem to that of a plate with constant
thickness not resting on a foundation. From the presented analysis and the numerical examples
the following main conclusions can be drawn:

As the method is boundary-only, it has all the advantages of the pure BEM, i.e., the
discretization and integration are performed only on the boundary.

The known fundamental solution of the biharmonic equation is employed to derive the
integral representation of the solution, and therefore the inability to establish the fundamental
solution of the governing equation is overcome.

The deflection, the stress resultants and the subgrade reaction at any point are computed
using the respective integral representations as mathematical formulae.

Accurate numerical results for the displacements and the stress resultants are obtained
using multiquadrics.

The concept of the analog equation in conjunction with radial-basis-functions approxima-
tion of the fictitious sources renders the BEM a versatile computational method for solving
difficult nonlinear engineering problems.
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